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Abstract—Person re-identification plays an important role in
the field of robot intelligence perception and public safety. Its
main task is to identify person targets under cross-camera.
However, the domain diversity between different datasets poses
a clear challenge for adapting a model trained on one dataset
to another. Currently, person re-identification methods based
on domain adaptive learning and pseudo-label have made good
progress on this problem. Unfortunately, inferior pseudo-labels
and source domain noise affect the performance. In order to
improve the quality of generated pseudo-labels and enhance
the feature representation capability of the model, we propose
a pseudo-label assisted optimization of a multi-branch person
re-identification method. The multi-branch network is able to
extract and represent more effective global and local features,
and the generated pseudo-labels are optimized by using cosine
similarity and DBSCAN clustering on the feature vectors, thus
improving the consistency of the supervised information to
enhance the cross-domain recognition performance. We also
use a loss function combining cross-entropy loss and triplet
loss to make the best feature learning. Experiments show that
our method performs well in the Market-to-Duke and Duke-to-
Market cross-domain recognition tasks.

Index Terms—Person re-identification, Pseudo-label, Multi-
branch network, Cross domain adaptive

I. INTRODUCTION

Person re-identification (Re-id) is an important research area
in the field of pattern recognition and automation, whose main
objective is to achieve accurate re-identification of persons [1].
In robotic systems, Re-id also plays an important role. With
person re-identification, the robot can realize the recognition,
location, and tracking of persons, and then realize the func-
tions of intelligent navigation and human-robot interaction. In
addition, re-id can be applied to robot security and monitoring
systems to improve the safety and reliability of robots.

Person re-identification aims to accomplish the task of
person targets retrieved across cameras. At its core is the
problem of instance-level image retrieval across domains [2].
In real situations, the data of the training model and the data
to be detected are often not captured by the same camera.
For person images from new camera systems, Re-id models
trained on existing datasets usually suffer from significant
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performance degradation due to the domain gap. To address
this problem, researchers have used various schemes such as
cross-domain adversarial training, transfer learning, data aug-
mentation, and domain adaptive learning. The cross-domain
adversarial training based method is usually a Generative
Adversarial Networks (GANs) based method [3] [4], which
requires a large amount of target domain data for training
and requires considerable training time and computational
resources, and the model is vulnerable to noise and poor
quality generated samples. The transfer learning based method
is sensitive to the differences between source and target
domain data which requires a deeper understanding of the
characteristics of the dataset, otherwise the results will be poor
[5] [6]. In contrast, the domain adaptive learning based method
enables the model to adapt to new domains by generating
pseudo-labels for joint training and iterative optimization. In
addition, the method does not require strict annotation of the
target domain data, which is relatively easy to implement [7]
[8].

However, the domain adaptive learning based method re-
quires the adequate and reasonable selection and processing
of samples in the source and target domains, otherwise,
the source domain and pseudo-label noise will cause strong
interference, resulting in insufficient model generalization ca-
pability. Effective feature extraction and high-quality pseudo-
labels can greatly reduce the impact of these noises. Among
the traditional supervised learning methods, [9] successfully
uses multi-branch networks to effectively improve the feature
extraction ability. Multi-branch networks can provide better
feature representation capability and better feature fusion
capability, which can abstract different feature dimensions
and improve the generalization performance of the model
in unknown domains. Therefore, we propose a multi-branch
network based on resnet50 [10] for better representing of
global and local features for the characteristics of the per-
son dataset. Besides, among the domain adaptive learning
methods, the pseudo-label based domain adaptive learning
methods are widely used, but there may be some errors
in generating pseudo-labels, so the quality of the pseudo-
labels directly determines the performance of model in cross-
domain recognition. In this regard, we adopt a pseudo-label
optimization method for domain adaptive learning. First, the



feature vector is filtered using cosine similarity during the
training process to distinguish irrelevant features and select
features that may come from the same person target. Then
the feature optimization method based on DBSCAN clustering
[11] is used to cluster global and local features in continuous
iterations to ensure that all features belonging to the same
person in all branches have the same identity and improve the
consistency of the supervisory information, which can reduce
the error caused by the generated pseudo-labels. At the same
time, we also reconstruct the training sample space and design
a set of data augmentation strategies to increase the diversity
and complexity of the training samples in order to enhance
the cross-domain recognition ability of the model.

We experiment and evaluate our method on Market1501 [2]
and DukeMTMC-reid [12] dataset, the two most widely used
and popular datasets in the field of person re-identification.
The experimental results show that our method possesses the
ability to effectively improve the performance on cross-domain
recognition in person re-identification.

II. METHODOLOGY

A. Sample Space Construction

We establish a data mapping to construct a new sample
space through a joint data augmentation strategies. Our pur-
pose of this part is to increase the diversity and variability of
the training data, which can lead to better generalization and
improved performance of the model.

Let Γ be the set of data augmentation operations applied
to the original data space. γj(xi) represents the image xi

after applying the operation γj , including Augmix, Gaussian
blur, color jittering, random perspectives, random cropping,
and random erasing (mosaic and regular [13]). As shown in
Fig. 1
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Fig. 1. The Sample space construction for training including Augmix,
Gaussian blur, color jittering, random perspectives, random cropping, and
random erasing (mosaic and regular)

The transformation can be represented as follows:

X
′
= {(γj(xi), yi) | xi ∈ X , γj ∈ Γ} (1)

where yi is the label related to xi. We set a series of parameters
{t1, ..., tk} applying the corresponding transformations γj .
The new constructed sample space is also defined at the
identity-level, which means the transformed image is corre-
sponding to a true identity of the original one. By constructing
new training sample spaces that are similar but not identical

to the original data spaces, the model can learn to recognize
persons under a wide range of conditions and generalize better
to unseen data.

B. Network Structure

We propose a multi-branch network for this task. The
network architecture proposed applies the ResNet50 backbone
to obtain a feature map f . f represents the learned features
extracted from the image at different levels of abstraction.
After the res conv4 1 block, this feature map is split into
three branches: a global branch that applies global average
pooling to obtain a global feature vector fglobal, and two local
branches that divide the feature map into horizontal parts and
apply average pooling to obtain several fine-grained feature
vectors. The feature space has dimensions equal to the total
number of features extracted from the Resnet50 backbone and
the three branches, which is the sum of the dimensions of
the global feature vector fglobal and the local feature vectors
flocal1 and flocal2. Resnet50 is set as a backbone to extract
features. After the res conv4 1 block, the backbone feature
maps are split into three different branches:

Global Branch:

fglobal =
1

HW

H∑
i=1

W∑
j=1

fi,j (2)

where H and W are the height and width of the feature map
f . fi,j corresponds to the response of the feature map f at
the spatial location (i, j) to a particular feature or pattern in
the input image. By computing the average activation across
all spatial locations of f , we obtain the global feature vector
fglobal, which summarizes the most salient features of the
input image, while the local branches extract more fine-grained
features from different regions of the feature map.

Local Branch 1:
We split the feature maps obtained from the backbone into

two parts along the horizontal direction, concatenate them, and
apply a global pooling layer on the concatenated feature map:

flocal1 =
1

2HW

H/2∑
i=1

W∑
j=1

fi,j

⊕ 1

2HW

H∑
i=H/2+1

W∑
j=1

fi,j

(3)

Local Branch 2:
Similar to Local Branch 1, we split the feature maps

obtained from the backbone into six parts along the horizontal
direction, concatenate them, and apply a global pooling layer
on the concatenated feature map:

flocal2 =
1

6HW

H/6∑
i=1

W∑
j=1

fi,j

⊕ ...⊕Wl2
1

6HW

H∑
i=5H/6+1

W∑
j=1

fi,j

(4)



Finally, we concatenate the global feature vector and the
feature vectors from Local Branch 1 and Local Branch 2 to
get the final feature vector:

fo = F (x) = concat(fglobal, flocal1, flocal2) (5)

where F (x) refers to the function that maps an input image
x to a output feature map fo, which encodes the salient
features of the image across different levels of abstraction.
The structure of our proposed network structure is shown in
Fig. 2.

C. Pseudo-label Generation

For pseudo-label-based domain adaptive person re-
identification, the implementations are usually divided into two
parts. The first part is to generate the pseudo-label. The second
part is to improve the quality of the generated pseudo-label,
in our paper, specifically is to optimize the quality and the
consistency of all the supervised information during training.
This first part is carried out in the following way:

• Train a pre-trained model using source data.
• Predict these samples from the target domain.
• Generate pseudo-label for the selected samples from

target domain.
Firstly, we define the source data as Ds = {(xi, yi)}Ns

i=1, in
which xi denotes the i-th sample image, and yi denotes the i-
th label related to the xi. Similarly, Dt = (xj)

Nt

j=1 denotes the
target data. The proposed resnet-based multi-branch network is
used for feature extraction as shwon in (5). In the pre-training
part, the extracted feature can be presented as fs(xi), where
i ∈ [1, Ns].

A cross-entropy loss is used to measure the difference
between the predicted label and the true label:

Lce = − 1

Ns

Ns∑
i=1

K∑
k=1

yi,k log (pi,c) (6)

where K is the number of categories, yi,c denotes the true
label of the kth category of the ith image, and pi,k denotes
the predicted probability of the kth category of the ith image.

To reduce the distribution differences between the source
and target domains, pseudo-label is used to assist the training.
Specifically, a pre-trained model is used to extract features
from the target domain data to obtain the feature vector ft(xi),
where i ∈ [1, Nt]. Then, the softmax function is used for
ft(xi) to obtain the prediction probability vector pt(xi):

pt, i, k =
exp

(
wT

k ft (xi)
)∑K

k=1 exp
(
wT

k ft (xi)
) (7)

where wk is the weight vector of the softmax function,
k ∈ [1,K]. The pt(xi) is used as the pseudo label of the
target domain data, and the target domain data is added to the
training using the pseudo label method. Specifically, the target
domain data and pseudo label are formed into a new dataset
D′ = (xi, pt(xi))

Ns+Nt

i=Ns+1, and then D′ is trained together with
the source domain dataset Ds. The cross-entropy loss function

is used to measure the difference between the predicted labels
and the pseudo-labels:

Lce pre = − 1

Ns +Nt

Ns+Nt∑
i=1

K∑
k=1

yi,k log (pi,k) (8)

where yi,k denotes the true label or predicted label of the
kth category of the ith image, and pi,k denotes the predicted
probability of the kth category of the ith image.

In addition, to further improve the robustness and general-
ization performance of the model, triplet loss can be used to
train the model. Specifically, for each image xi in the source
and target domains, its feature vector f(xi) can be used to
calculate the distance dij between it and other images f(xj)
of the same identity and the distance dik between it and other
images f(xk) of different identities, and then triplet loss can
be used to encourage images to be closer together and images
with different identities to be further apart, which is:

Ltri pre =
1

Nt

Ns+Nt∑
i=Ns+1

∑
a,p,n

max (0, dia − dip +m)

+ max (0, dia − din +m)

(9)

where a, p, n denotes three images of the same identity for xi

and m is the margin parameter that controls the gap between
the distance between images of the same identity and the
distance between images of different identities.

For the pseudo-label generation step, which is closely
related to the second part, the generated pseudo-label is
also updated when the quality of the pseudo-label and the
consistency of the supervised information are optimized.

D. Optimization for the quality of pseudo-label and the con-
sistency of supervised information

For cross-camera person re-identification tasks, there is a
domain gap between different datasets. The quality of pseudo-
label is the most important part. The way in our paper to
improve it is to make all the supervised information in the
training process be highly consistent, so that the learned model
is of higher robustness.

Firstly, we calculate the cosine similarity score between
each sample from source domain Ds = {(xi, yi)}Ns

i=1 and
target domain Dt = (xj)

Nt

j=1. The cosine similarity measures
the degree of similarity between two feature vectors:

d(fs(xi), ft(xj)) =
fs(xi) · ft(xj)

∥fs(xi)∥ ∥ft(xj)∥
(10)

where d(fs(xi), ft(xj)) denotes the distance of two feature
vectors, · denotes the vector dot product and ∥·∥ denotes the
L2 parametrization of the vector.

The similarity threshold τ1 is set fixed throughout the
training process. The results can be represented as follows:

S = {ft(xj) | d(fs(xi), ft(xj)) ≥ τ1, j ∈ [1, Ns]} (11)

where S denotes the set of feature vectors from source domain
with similarity scores above a threshold τ1 to the feature
vectors ft(xj) from target domain, the pseudo-label set related
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Fig. 2. The structure of our proposed network. There are three branches for feature extraction. After the backbone, there is a pseudo-label optimization stage.

to S can be defined as Ypseudo = {y1, y2, ..., ym} for the first
stage, where yi ∈ Rd denotes the pseudo-label of the ith
sample.

Then, Ypseudo are the input of clustering optimization, which
is the second stage. Here we use the Density-based spatial
clustering of applications with noise (DBSCAN) to cluster the
samples. DBSCAN is a density clustering algorithm whose
core idea is to divide high-density regions into a cluster
and low-density regions into noise. The clustering process is
performed independently in each iteration. The output is a set
of clusters C = {C1, C2, ..., Ck}.

In the clustering processing, we try to optimize the Ypseudo
into a set of clusters C. Specifically, let the distance matrix
be D ∈ Rm×m, where m is the number of pseudo-labels. For
each sample yi ∈ Ypseudo, compute its domain Ni in D and
count the number of samples it contains |Ni|, as (12):

Ni = {yi ∈ Ypseudo | Dij ≤ ϵ} , |Ni| ≥ minPts (12)

where ϵ is the distance threshold parameter in DBSCAN and
minPts is the minimum number of fields for the core objects
in DBSCAN.

For all samples yi marked as core objects, add them
and all their samples in Ni to a cluster Cp ∈ C. For all
samples yj that are marked as non-core objects, mark them
as boundary points and remove them from Ypseudo. For each
cluster Cp, if the number of samples it contains is less than
a threshold minSize, it will be deleted. The final remaining
clusters C = {C1, C2, ..., Ck} are the optimized pseudo-label
clustering results. The algorithm of our optimization method
is shown in Algorithm 1.

E. Loss Function

The total loss function in the optimization process can be
represented as:

Ltotal = λ1Lce + λ2Ltri (13)

where λ1 and λ2 are the loss weight for two kinds of loss
functions. Lce denotes the cross-entropy loss in the source
and target domains for training the classifier, Ltri denotes the

triplet loss for training the feature extractor, and Lp denotes
the pseudo-label loss for training the classifier and optimizing
the performance of domain adaptation. The Lce and Ltri are
set the same as (8) and (9).

III. EXPERIMENTS AND RESULTS

A. Dataset and Metrics

We evaluate our proposed method on two widely used per-
son re-identification datasets: Market1501 and DukeMTMC-
reid. The Maket1501 dataset has 32,668 images containing
1501 identities, of which 12,936 images in the training set con-
tain 751 identities, obtained by 6 camera. The DukeMTMC-
reid dataset has 36,411 rows of images containing 702 iden-
tities, of which 16,552 images in the training set, captured by
8 cameras. We conduct domain adaptive experiments on these
three datasets, only data from the source domain provided
label information. Mean average precision (mAP) and Cumu-
lative Catch Characteristics Curve (CMC) top-1 accuracy are
adopted to evaluate the model performance.

B. Implementation Details

We use a multi-branch resnet50 based network as the
backbone. We design a set of data augmentation strategies
for sample space construction, which makes the training
samples more diverse and thus can improve the generalization
of model performance. The data augmentation strategies are
used in both the pre-training and optimization processes,
which include Augmix, Gaussian blur, color jittering, random
perspectives, random cropping, and random erasing (mosaic
and regular). All images are resized to 256 × 128 before
being sent into the backbone network. We randomly sample 4
instances per ground truth (in pre-training) and pseudo label
(in optimization) in a mini-batch, resulting in batch-size 64.
Adam optimizer is used in all the training process with a
weight decay of 0.0005. For the pre-training stage, the initial
learning rate is set to 0.00035 and is decreased to 0.1 of its
previous value on the 40-th and 70-th epoch in the total 100
epochs. For the optimization stage, the learning rate is fixed
to 0.00035 for overall 40 training epochs. We adopted loss



Algorithm 1: Optimization for Pseudo-label and Con-
sistency of Supervised Information

Input: Source domain data Ds = {(xi, yi)}Ns
i=1, target

domain data Dt = (xj)
Nt

j=1
Output: Optimized pseudo-label clustering results

1 Step 1: Calculate cosine similarity scores;
2 for i = 1 to Ns do
3 for j = 1 to Nt do
4 Calculate d(fs(xi), ft(xj)) as defined in Eq.

(10);
5 if d(fs(xi), ft(xj)) ≥ τ1 then
6 Add ft(xj) to S as defined in Eq. (11);
7 end
8 end
9 end

10 Generate pseudo-label set Ypseudo from S;
11 Step 2: Cluster optimization using DBSCAN;
12 Initialize D with pairwise distances between samples

in Ypseudo;
13 for i = 1 to m do
14 Compute Ni and |Ni| as defined in Eq. (12);
15 Mark yi as a core object if |Ni| ≥ minPts,

otherwise mark as a non-core object;
16 if yi is a core object then
17 Add yi and all samples in Ni to a new cluster

Cp;
18 end
19 else
20 Mark yi as a boundary point and remove it

from Ypseudo;
21 end
22 C =

⋃
Cp

23 end
24 Remove clusters with less than minSize samples;

return C = {C1, C2, ..., Ck};

function in (13), in which λ1=0.5, λ2=0.8. The m of triplet
loss is set to m=0.3. For the optimization stage, ϵ is set to
0.5 and minPts is set to 4. We set two tasks to evaluate our
method: Market1501-to-DukeMTMC-reid and DukeMTMC-
reid-to-Market1501. The baseline is a single branch resnet50
based network.

C. Results and Analysis

The results of our experiments for domain adaptive in
task Market1501-to-DukeMTMC-reid (Market-to-Duke) and
DukeMTMC-reid-to-Market1501 (Duke-to-Market) are shown
in Table I. Three typical unsupervised learning method for
person re-identification methods are also listed for comparison.

As we can see from Table I, our method is also superior
to the highest of the three typical methods in mAP by 18.4%
(Market-to-Duke), 16.9% (Duke-to-Market), and also in CMC
(top-1) by 10.1% (Market-to-Duke) and 10.5% (Duke-to-
Market).

TABLE I
RESULTS AND COMPARISON

Methods Market-to-Duke Duke-to-Market
mAP top-1 mAP top-1

ENC [14] 40.4 63.3 43.0 75.1
PCB-PAST [15] 54.3 72.4 54.6 78.4

SSG [7] 53.4 73.0 58.3 80.0
Pre-trained only 21.3 46.2 28.5 59.7

Ours 72.7 83.1 77.2 93.5

we evaluate each component of the proposed method. Com-
pared baselines are as follows:

• Pre-trained only: Pre-trained only without optimization
and fine-tuning stage.

• Final model (w/o DG): Final model only without the
data augmentation (AA) part.

• Final model (w/o Ltri): Final model only without a
triplet loss in the whole training stage.

• Final model (w/o Lce): Final model only without a cross-
entropy loss in the whole training stage.

• Original ResNet50: The backbone is a single branch
original resnet50 network, only optimizing and fine-
tuning on global features.

The ablation studies are shown in Table II and Table III.
When our multi-branch network is adopted, the performance
is significantly better than with the original resnet50: 8.0%
(Market-to-Duke) and 8.4% (Duke-to-Market) better on mAP,
and 4.8% and 4.6% better on CMC (top-1).

Fig. 3. The loss curse for pre-training stage of our method and baseline
model. The red line denotes the baseline, and the blue line denotes ours.

The loss curse for pre-training stage is shown in Fig. 3.
From the Fig. 3, we can obviously observe that the difference
in performance between the two networks can be illustrated by
the magnitude of the drop and the jitter of the two curves. Our
network drops faster and has less jitter during the drop. Our
network has stronger fitting ability and better performance for
feature extraction and recognition.



TABLE II
ABLATION STUDIES ON MARKET-TO-DUKE TASK

Market-to-Duke Original ResNet50 Our Backbone
mAP top-1 mAP top-1

Pre-trained only 18.4 32.5 21.3 46.2
Final model (w/o AA) 57.9 73.8 68.2 86.5
Final model (w/o Ltr) 59.6 76.3 68.6 86.2
Final model (w/o Lce) 59.1 75.5 66.9 81.0

Final model 64.7 78.3 72.7 83.1

TABLE III
ABLATION STUDIES ON DUKE-TO-MARKET TASK

Duke -to-Market Original ResNet50 Our Backbone
mAP top-1 mAP top-1

Pre-trained only 20.1 39.7 28.5 59.7
Final model (w/o DG) 65.5 79.6 69.3 87.6
Final model (w/o Ltr) 63.7 77.1 72.2 89.2
Final model (w/o Lce) 62.1 77.4 71.5 88.1

Ours 67.8 85.9 77.2 93.5

Compared with the ’pre-trained only’, our model with the
optimization stage has stronger domain adaptive recognition
capability and performs better in both Market-to-Duke and
Duke-to-Market tasks.

In addition, We use a loss function with a mixture of cross-
entropy and triplet loss. During the training process, cross-
entropy loss and triplet loss can promote each other, thus
improving the performance of the model. Specifically, Cross-
entropy loss is used to improve the classification accuracy of
the model, and triplet loss is used to enhance the model’s
ability to distinguish between persons. Cross-entropy loss can
make the model converge quickly and achieve high classi-
fication accuracy in the initial stage, while triplet loss can
enhance the discrimination between samples in the later stage
of training, thus improving the robustness and generalization
ability of the model. It can also be seen from Tables II and
Table III that using only one loss will not achieve the best
performance, and the performance of the model will both be
degraded.

IV. CONCLUSION

In this paper, we propose a multi-branch person re-
identification method with pseudo-label assisted optimization
method. Our method achieves good performance in cross-
domain recognition. We propose a multi-branch network that
can better extract and represent global and local features. The
input training data is also reconstructed in sample space to
make it more diverse and complex, which can enhance the
generalization of the model. We also propose a pseudo-label
optimization method to improve the quality of the generated
pseudo-labels, which consists of cosine similarity and DB-
SCAN clustering. This method can effectively improve the
pseudo-label quality and the consistency of the supervised
information. In the training process we use a combination
of cross-entropy loss and triplets loss to maximize the cross-
domain learning ability of the model. Ultimately, our method

shows good performance in both Market-to-Duke and Duke-
to-Market cross-domain tasks.
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